JOM 23666

New synthesis of acylferrocene by hydroiminoacylation of the terminal olefin with ferrocenecarboxaldimine and application to polymer-supported acylferrocene

Chul-Ho Jun, Jung-Bu Kang and Jin-Yong Kim

Agency for Defense Development, Yuseong, P.O. Box 35, Taejon 305-600 (South Korea) Received January 8, 1993; in revised form March 12, 1993)

Abstract

Acylferrocenes were synthesized by hydroiminoacylation of the ω -olefins 1-pentene (3a), vinylferrocene (3b) and but-3-enylferrocene (3c), with the ferrocenecarboxaldimine 2, prepared from ferrocenecarboxaldehyde (1) and 2-amino-3-picoline, under the action of Wilkinson's catalyst, followed by hydrolysis of the corresponding ketimines (5a, 5b and 5c). This hydroiminoacylation was used to incorporate the ferrocenyl group into phenyl-terminated poly-butadiene (PTPB, consisting of 27% vinyl and 73% internal olefin group). 74% hydroacylation of the vinyl group in 7 was accomplished in the first catalytic reaction and in 10 the second hydroacylation completed the conversion of the vinyl group into acylferrocene.

1. Introduction

Recently interest has been growing in polymer-supported metal complexes since they have potential for catalysts and for new functionalized materials [1]. Organometallic complexes have been incorporated into polymers by a variety of methods, some of which are as follows: (1) introducing metal complexes onto functionalized supports (polymer) including phosphorus [2], nitrogen [3], or oxygen [4] donors by coordination; (2) metal complexes bound to polymeric supports through metal-carbon bonds [5]; (3) polymerization of functionalized monomers containing organometallic complexes [6]. In most cases a preformed polymer must be functionalized, except in (3), so that a catalytic complex can be attached. This may be done by derivatizing the polymer with a ligand, which is used to bind the metal. However, there are only limited methods for incorporating organometallic complexes into a polymer through a metal-carbon σ -bond without functionalizing a preformed polymer. Already we and others have studied the hydroiminoacylation of the terminal olefin group with aldimine, prepared from aldehyde and amine, by

an Rh^I catalyst to give ketimine, the precursor of ketone [7]. Even organometallic complexes such as ferrocenecarboxaldehvde can be converted into diacylferrocene as well as into alkenyl acylferrocene, through hydroiminoacylation of 1,5-hexadiene [8]. Acylferrocenes are particularly important in the synthesis of alkylferrocenes, of α -hydroxyalkylferrocenes, and of alkenylferrocenes from the alcohol [9]. Although acylferrocene cannot be synthesized catalytically by general methods such as the Friedel-Crafts acylation [9], hydroiminoacylation of aldimine makes it possible to prepare acylferrocenes with Rh^I catalyst. Through this catalytic reaction, it is possible to attach the ferrocenyl group to a variety of compounds having the vinyl group. In this paper we report a method for incorporating the ferrocenyl group into the non-functionalized preformed polymer (poly-butadiene) as well as into various vinyl compounds through the metal-carbon σ -bond.

2. Result and discussion

Ferrocenecarboxaldimine (2), the starting organometallic compound for hydroiminoacylation, was obtained by condensation of ferrocenecarboxaldehyde (1) and 2-amino-3-picoline with continuous removal of water under acid catalyst. Compound 2 was reacted

Correspondence to: Dr. C.-H. Jun.

with the terminal olefin in 3a under Wilkinson's complex (4) as a catalyst to give ketimine 5a (Scheme 1). The mechanism proposed was that the C-H bond of aldimine was initially cleaved by the Rh¹ species to generate the iminoacyl rhodium(III) hydride complex, and the subsequent migration of hydride into the vinyl group in ω -olefins gave the iminoacyl rhodium(III) alkyl complex by Markownikoff's rule, followed by reductive-elimination to give the ketimine [7a]. Without isolation of 5a, it was hydrolyzed by aqueous acidic solution to give hexanoylferrocene (6a) in 79% yield after chromatographic isolation. Consequently through this reaction, it become possible to convert ferrocenecarboxaldehyde (1) to alkanoylferrocene. Instead of ω -alkene as a substrate, a simple organometallic complex with a vinyl group, like vinylferrocene (3b), was used for this hydroiminoacylation. The reaction of 3b and 2 in a 1:1 ratio at 130°C for 6 h with 4 as catalyst and hydrolysis of the resulting ketimine 5b gave 3-ferrocenylpropanoylferrocene (6b) in 56% yield after chromatographic isolation. Compound 2 also reacted catalytically with but-3-enyl ferrocene (3c), another ferrocene derivative having a longer chain ω olefin than the vinyl group, to give 5c, which was also hydrolyzed to give the acylferrocene 6c in 40% yield. Comparing the yield of 6c with that of 6b, there is no observable improvement, indicating that 3b has no bigger a steric hindrance than 3c in hydrometallation after catalytic C-H bond cleavage of aldimine by Rh¹.

One of the interesting substrates for hydroiminoacylation is polybutadiene because it has both olefins, the internal olefin (consisting of *cis*- and *trans*-olefins) and the terminal olefin (the vinyl group) [10 *]. We chose phenyl-terminated polybutadiene (PTPB) (7) contain-

ing 27% of the terminal vinylic olefin and 73% of the internal olefin. Chemical methods for binding the organometallic compounds with the polymer through the metal-carbon σ -bond do exist [5]. Under the above reaction conditions, compound 2 reacted catalytically with the polymer 7 to give 8 (Scheme 2). The ketimine-impregnated polymer 8 was hard to isolate in the pure form due to its partial hydrolysis during purification by column chromatography. Complete hydrolysis of 8 with 1 N HCl aqueous solution and purification by column-chromatography gave the ferrocenyl group-impregnated polymer 9 in 67% yield. The polymer 9 was characterized by IR, ¹H and ¹³C NMR spectra. The IR band of the carbonyl peak appeared at 1680 cm^{-1} , indicating that ketimine was completely hydrolyzed to ketone. The characteristic band of the vinyl group at 910 $\rm cm^{-1}$ was diminished dramatically while those of the *trans*-1,4-internal olefin at 964 cm^{-1} and the cis-1,4-internal olefin at 725 cm⁻¹ still existed [11] (Fig. 1b). The ratio of the vinylic olefin and the internal olefins in polybutadiene compounds can be

^{*} Reference number with an asterisk indicates a note in the list of references.

measured by ¹H NMR spectra, by measuring the integrations of the vinylic CH₂ peak in the range 4.9-5.0 ppm and the internal olefinic -CH=CH- and the vinylic -CH= in the range 5.3-5.6 ppm; evidently 74% of the vinyl group in 7 was hydroacylated (Fig. 2b). In particular, α -CH₂ to the carbonyl group in 9 appeared at 2.7 ppm as a triplet that was not noted in the starting polymer 7. The partially ferrocene-impregnated polymer 9 could be rehydroacylated under identical reaction conditions to give the complete vinyl-hydroacylated polymer 10. ¹H NMR spectra show that the vinyl peaks in 4.9-5.0 ppm disappeared completely (Fig. 2c). Further evidence for the complete hydroacy-

Fig. 1. (a) characteristic IR bands of *trans* (964 cm⁻¹), vinyl (910 cm⁻¹) and *cis* olefins (725 cm⁻¹) in 7, (b) decreased vinyl IR band in 9, and (c) complete disappearance of vinyl IR band in 10

Fig. 2. ¹H NMR spectra of (a) PTPB 7, (b) 74% of vinyl group-hydroacylated PTPB 9, and (c) vinyl group-hydroacylated PTPB 10

lation of the vinyl group in 7 is the disappearance of the IR band at 910 cm^{-1} as shown in Fig. 1c.

The ¹³C NMR spectra also showed the characteristic peaks for 10 (Fig. 3). While the signals of terminal olefinic carbons at 142.4 and 114.2 ppm in 7 have completely disappeared in 10, new characteristic peaks of the acylferrocenyl group have appeared at 79.0 (C-1 in substituted Cp group), 72.0 (C-2,5 in substituted Cp group), 69.6 (unsubstituted Cp group) and 69.3 ppm (C-3,4 in substituted Cp group) for the ferrocenyl group [12] as well as 204.6 ppm for the carbonyl group. One interesting feature of 10 is the ¹³C NMR chemical shift of α -CH₂ to the carbonyl group, 36.95 ppm, which is different from that of 6a and 6c, 39.6 ppm. This can be explained by a γ -effect which leads to a 2.5 ppm up-field shift because the α -carbon to the carbonyl group in polymer 10 has two γ -carbons while 6a and 6c each have only one γ -carbon to the carbonyl group [13]. Complete conversion of 2 and 7 to 10 was not achieved in a single step, maybe due to catalytic poisoning during the reaction. It might be possible to improve catalytic activity by changing the reaction conditions.

The above result indicates that a new method for incorporating organometallic compounds into the polymer has been developed. We are now studying further applications, under modified reaction conditions, of aldimine 2 to the polymer chemistry and the one-step complete conversion of 2 and 7 to 10.

3. Experimental section

Compound 1 [9] and 3c [14] were prepared by published procedures. Wilkinson's complex, 1-pentene (3a), vinyl ferrocene (3b), 2-amino-3-picoline and phenylterminated polybutadiene (PTPB, containing 27% terminal vinylic olefin [10]; average M.W. 3400) (7) were purchased from Aldrich and used without further purification. All solvents were distilled and stored over molecular sieves (4 Å). NMR spectra were recorded with either a Bruker AC-200 (200 MHz) or a Varian FT-80 A (80 MHz) spectrometer. The chemical shifts (δ) of the ¹H NMR and ¹³C resonances are in ppm relative to internal Me₄Si. Infrared spectra were recorded with a Perkin-Elmer 683 spectrometer. Microanalyses were conducted by ADD Analytical Laboratory. Mass spectra were obtained on Hewlett-Packard HP 5971 A mass spectrometer equipped with an HP 5890 series II Gas Chromatograph. Column chromatography was performed on Merck silica gel 60.

3.1. Synthesis of 3-methyl-2-aminopyridyl ferrocenecarboxaldimine (2)

To a mixture of 10 g (0.047 mol) of ferrocenecarboxaldehyde (1) and 11.56 g (0.11 mol) of 3-methyl-2-amino pyridine in 50 ml of benzene was added 0.01 g (0.053 mmol) of p-toluenesulfonic acid as catalyst. The reaction mixture was allowed to heat at 100°C with removal of water by Dean-Stark apparatus. After complete removal of the calculated amount of water, solvent and

excess 3-methyl-2-aminopyridine were evaporated and distilled off under high vacuum to give 2. 2: ¹H NMR (200 MHz, CDCl₃) δ (ppm) 8.9 (s, 1H, H–C(–Fc)=N–), 8.26 (d, J = 4.55 Hz, H-6 in picoline group), 7.50 (d, J = 7.03 Hz, 1H, H-4 in picoline group), 7.04 (m, 1H, H-5 in picoline group), 4.87 (t, J = 1.9 Hz, 2H, Hs-2,5 in substituted Cp ring), 4.51 (t, J = 1.9 Hz, 2H, Hs-3,4 in substituted Cp ring), 4.25 (s, 5H, Cp ring), 2.40 (s, 3H, CH₃-); ¹³C NMR (50.5 MHz, CDCl₃) δ (ppm) 163 (C=N), 146–120 (carbons of picoline ring), 73.1(C-1 in substituted Cp ring), 71.5 (C-2,5 in substituted Cp ring), 69.6 (C-3.4 in substituted Cp ring), 69.4 (Cp ring), 17.5 (CH₃-); IR (neat) 3060, 2900, 1600s, 1560s, 1440, 1400, 1220, 1090, 1025, 865, 810s, 770 cm⁻¹.; mass spectra (assignment, relative intensity) $305 (M^+ + 1)$, 100), 304 (M⁺, 14), 239 (M⁺-C₅H₅, 33), 211 (Fc - CN⁺, 27), 183 (M⁺-C₅H₅Fe, 13), 122 (C₅H₅Fe⁺, 24); Anal. Calcd. for C₁₇H₁₆N₂Fe: C, 67.11; H, 5.26; N, 9.21. Found: C, 65.66; H, 5.68; N, 9.22%.

3.2. Hydroiminoacylation of 1-pentene with 2 and hydrolysis of the resulting ketimine i

A screw-capped pressure vial was charged with 0.031 g (0.0329 mmol) of Wilkinson's complex (4) dissolved in 3 ml of THF and the solution was flushed with nitrogen, and 0.1 g (0.329 mmol) of aldimine 2 was added. To the mixture was added 0.028 g (0.395 mmol) of 1-pentene and it was heated at 130°C for 6 h. The

Fig. 3. ¹³C NMR spectra of (a) PTPB 7, and (b) vinyl group-hydroacylated PTPB 10

reaction mixture was hydrolyzed with 10 ml of 1 N HCl aq, solution. The product was extracted with 20 ml of ether and purified by column chromatography to give 0.073 g (79% yield) of pure acylferrocene **6a**. **6a**: ¹H NMR (200 MHz, CDCl₃) δ (ppm) 4.78 (t, J = 1.94 Hz, 2H, Hs-2,5 in substituted Cp ring), 4.48 (t, J = 1.90 Hz, 2H, Hs-3,4 in substituted Cp ring), 4.2 (s, 5H, Cp ring), 2.7 (t, J = 7.2 Hz, α -CH₂ to CO), 1.7 (m, 2H, β -CH₂), 1.3 (m, 4H, γ , δ -CH₂). 0.95 (t, J = 6.3 Hz, 3H, CH₃-); ¹³C NMR (50.5 MHz, CDCl₃) δ (ppm) 79.3 (C-1 in substituted Cp ring), 72 (C-2,5 in substituted Cp ring), 69.7 (Cp ring), 69.3 (C-3.4 in substituted Cp ring), 39.6 $(\alpha$ -CH₂ to CO), 31.7 (γ -CH₂ to CO), 24.3 (β -CH₂ to CO), 22.5 (δ -CH₂ to CO), 13.9 (CH₃-); IR (neat) 3100, 2960, 2930, 2860, 1670vs (C=O), 1450, 1380, 1250, 1110, 1065, 1025, 1000, 820 cm⁻¹.; mass spectra (assignment, relative intensity) 284 (M⁺, 100), 228 (Fc -C(OH)=CH₂⁺, 45), 213 (FcCO⁺, 28), 185 (Fc⁺, 43), 121 $(Fc^+ - C_5H_5 + 1, 44)$; Anal. Calcd. for $C_{16}H_{20}OFe$: C, 67.61; H, 7.04. Found: C, 65.80; H, 7.50%.

3.3. Hydroiminoacylation of vinylferrocene (3b) with 2 and hydrolysis of the resulting ketimine

A screw-capped pressure vial was charged with 0.031 g (0.033 mmol) of Wilkinson's complex dissolved in 3 ml of toluene and the solution was flushed with nitrogen, and 0.1 g (0.33 mmol) of aldimine 2 was added. To the mixture was added 0.070 g (0.33 mmol) of 3b and it was heated at 130°C for 6 h. The reaction mixture was hydrolyzed with 20 ml of 1 N HCl aqueous solution. The product was extracted with 20 ml of chloroform, and purified by column chromatography to give 0.078 g (56% yield) of pure acylferrocene 6b. 6b: ¹H NMR (200 MHz, CDCl₃) δ (ppm) 4.76 (t, J = 1.85 Hz, 2H, Hs-2,5 in substituted acyl Fc ring), 4.48 (t, J = 1.86 Hz, 2H, Hs-3,4 in substituted acyl Fc ring), 4.14-4.06 (m, 14H, Cp rings in alkyl Fc and unsubstituted Cp ring in acyl Fc), 2.85 (A₂B₂ system, J = 7.6 Hz, 2H, α -CH₂ to CO), 2.77 (A₂B₂ system, J = 7.6 Hz, 2H, β -CH₂ to CO); ¹³C NMR (50.5 MHz, CDCl₃) δ (ppm) 203.4 (CO), 88.2 (C-1 in substituted alkyl Fc ring), 79.0 (C-1 in substituted acyl Fc ring), 72.1 (C-2,5 in substituted acyl Fc ring), 69.7 (unsubstituted acyl Fc ring), 69.2 (C-3,4 in substituted acyl Fc ring), 68.5 (unsubstituted alkyl Fc ring), 68.3 and 67.4 (C-2,5 and C-3,4 in substituted alkyl Fc ring), 41.5 (α -CH₂ to CO), 24.2 (β -CH₂ to CO); IR (neat) 3090, 2930, 1660vs (C=O), 1465, 1405, 1380, 1262, 1240, 1105, 1080, 1030, 1000, 870, 820 cm^{-1} ; mass spectra (assignment, relative intensity) 426 $(M^+, 100), 361 (M^+ - C_5H_5, 27), 304 (FcFc^+ - C_5H_5 - C_5H_5)$ 1, 12), 241 (FcCH₂CH₂CO⁺, 31), 213 (FcCH₂CH₂⁺, 13), 121 (Fc⁺ – C₅H₅-1, 28); Anal. Calcd. for C₂₃H₂₂OFe₂: C, 64.79; H, 5.16. Found: C, 64.50; H, 5.36%.

3.4. Hydroiminoacylation of but-3-enylferrocene (3c) with 2 and hydrolysis of the resulting ketimine

A screw-capped pressure vial was charged with 0.031 g (0.033 mmol) of Wilkinson's complex dissolved in 3 ml of toluene and the solution was flushed with nitrogen, and 0.1 g (0.33 mmol) of aldimine 2 was added. To the mixture was added 0.079 g (0.33 mmol) of 3c and it was heated at 125°C for 6 h. The reaction mixture was hydrolyzed with 10 ml of 1 N HCl aqueous solution. The product was extracted with 20 ml of chloroform, and purified by column chromatography to give 0.06 g (40% vield) of pure acylferrocene 6c. 6c: ¹H NMR (200 MHz, CDCl₃) δ (ppm) 4.78 (t, J = 1.91 Hz, 2H, Hs-2,5 in substituted acyl Fc ring), 4.48 (t, J = 1.90 Hz, 2H, Hs-3,4 in substituted acyl Fc ring), 4.2 (s, 5H, unsubstituted acyl Fc ring), 4.1 (s, 5H, unsubstituted alkyl Fc ring), 4.09-3.97 (m, 4H, substituted alkyl Fc ring), 2.7 (t, J = 7.1 Hz, 2H, α -CH₂ to CO), 2.4 (t, J = 7.4 Hz, δ -CH₂ to CO), 1.8–1.5 (m, 4H, β and γ -CH₂ to CO); ¹³C NMR (50.5 MHz, CDCl₃)δ (ppm) 72 (C-2,5 in substituted acyl Fc ring), 69.7 (unsubstituted acyl Fc ring), 69.3 (C-3,4 in substituted acyl Fc ring), 68.5 (unsubstituted alkyl Fc ring), 68.1 and 67.1 (C-2,5 and C-3,4 in substituted alkyl Fc ring), 39.6 (α -CH₂ to CO), 31.0 (δ -CH₂ to CO), 29.6 (β -CH₂ to CO), 24.6 (γ -CH₂ to CO); IR (neat) 3090, 2930, 2860, 1670vs (C=O), 1450, 1410, 1380, 1245, 1105, 1020, 1000, 890, 820 cm⁻¹.; mass spectra (assignment, relative intensity) 454 (M⁺, 100), 389 (M⁺ - C₅H₅, 46), 241 (FcCH₂CH₂CH₂CH₂⁺, 18), 228 (FcC(OH)=CH₂⁺, 12), 199 (FcCH₂⁺, 10), 185 (Fc⁺, 8), 121 (Fc⁺ - C₅H₅-1, 45); Anal. Calcd. for C₂₅H₂₆OFe₂: C, 66.08; H, 5.73. Found: C, 67.90; H, 5.51%.

3.5. Hydroiminoacylation of phenyl terminated polybutadiene (PTPB) (7) with 2 and hydrolysis of the resulting ketimine-impregnated polymer

A screw-capped pressure vial was charged with 0.0372 g (0.0402 mmol) of Wilkinson's complex dissolved in 3 ml of toluene and the solution was flushed with nitrogen, and 0.122g (0.402 mmol) of aldimine 2 was added. To the mixture was added 0.0843 g of PTPB (7) and it was heated at 120°C for 6 h. The reaction mixture was hydrolyzed with 10 ml of 1 N HCl aqueous solution. The product was extracted with 20 ml of chloroform, and purified by column chromatography to give 0.099 g (67% yield based upon 7) of 9. 0.07 g of polymer 9 was dissolved in 3 ml of toluene and to the resulting solution was added mixtures of 0.029 g (0.032 mmol) of Wilkinson's complex and 0.097 g(0.032 mmol) of aldimine 2. The reaction mixture was heated at 130°C for 6 h, hydrolyzed by 20 ml of 1 N HCl aqueous solution, and extracted with chloroform. The extracted organic layer was reduced in volume and

purified by column chromatography to give 0.075 g (97% yield based upon 9) of pure ferrocene-impregnated polymer 10: ¹H NMR (200 MHz, CDCl₃) δ (ppm) 5.7-5.3 (br m, carbons of -CH= group), 4.77 (t, J = 1.77 Hz, Hs-2,5 in substituted Cp ring), 4.48 (t, J = 1.78 Hz, Hs-3,4 in substituted Cp ring), 4.19 (s, unsubstituted Cp ring), 2.67 (t, J = 7.2 Hz, α -CH₂ to CO), 2.1-1.2 (m, saturated CH₂ and CH); ¹³C NMR $(50.5 \text{ MHz, CDCl}_3) \delta$ (ppm) 204.6 (C=O), 131.6–127.9 (n-CH=CH-), 79.0 (C-1 in substituted Cp ring of Fc), 72.0 (C-2,5 in substituted Cp ring of Fc), 69.6 (unsubstituted Cp ring of Fc), 69.3 (C-3,4 in substituted Cp ring of Fc), 36.95 (α -CH₂ to CO), 36.3–27.3 (saturated CH and CH₂); IR (neat) 3100, 3000, 2920s, 2840, 1670vs (C=O), 1450, 1380, 1250, 1110, 1050, 1000, 970, 820 cm⁻¹; Anal. Calcd. for $C_{431.0}$ H_{533.0} O_{16.2} Fe_{16.2}: C, 75.26; H, 7.75. Found: C, 73.92; H, 8.33%.

Acknowledgments

The authors thank Dr. Tae-Heung Kim and Mr. Kui-Nam Choi for technical assistance.

References and notes

- For review: (a) T.R. Hartley, in Supported Metal Complexes, D. Reidel Publishing Co., Holland, 1985, p. 80; (b) C.U. Pittman, Jr., in G. Wilkinson and F.G.A. Stone, (eds.) Comprehensive Organometallic Chemistry, Pergamon Press, Oxford, 1982, p. 553; (c) H. Shirai and N. Hojo, in K. Takemoto, Y. Inaki and R.M. Ottenbrite, (eds.), Functional Monomers and Polymers, Marcel Dekker, New York, 1987, p. 49
- 2 (a) T. Jongsma, P. Kimkes, G. Challa and P.W.N.M. van Leeuwen, Polymer, 33 (1992) 161; (b) G.L. Baker, S.J. Fritschel and J.K. Stille, J. Org. Chem., 46 (1981) 2960; (c) C.U. Pittman, Jr. and C.-C. Lin, J. Org. Chem., 43 (1978) 4928; (d) C.U. Pittman, Jr. and A. Hirao, J. Org. Chem. 43 (1978) 640; (e) C.U. Pittman, Jr., S.E. Jacobson and H. Hiramo, J. Am. Chem. Soc., 97 (1975) 4774; (f) C.U. Pittman, Jr. and R.L. Smith, J. Am. Chem. Soc., 97 (1975) 1749; (g) C.U. Pittman, Jr., L.R. Smith and R.M. Hanes, J. Am. Chem. Soc., 97 (1975) 1742; (h) J.P. Collman, L.S. Hegedus, M.P. Cooke, J.R. Norton, G. Dolcetti and D.N. Marquardt, 94

(1972) 1789; (i) R.H. Grubbs and L.C. Kroll, J. Am. Chem. Soc. 93 (1971) 3062.

- 3 (a) R.J. Card, C.E. Liesner and D.C. Neckers, J. Org. Chem., 44 (1979) 1095; (b) R.B. King and E.M. Sweet, J. Org. Chem., 44 (1979) 385; (c) R.J. Card and D.C. Neckers, Inorg. Chem., 17 (1978) 2345; (d) R.J. Card and D.C. Neckers, J. Org. Chem., 43 (1978) 2958; (e) R.J. Card and D.C. Neckers, J. Am. Chem. Soc., 99 (1977) 7733; (f) L.D. Rollmann, J. Am. Chem. Soc., 97 (1975) 2132.
- 4 (a) S. Bhaduri, A. Ghosh and H. Khwaja, J. Chem. Soc., Dalton Trans., (1981) 447; (b) N.L. Holy, J. Org. Chem., 44 (1979) 239.
- 5 (a) R.A. O'Brien, T.-A. Chen and R.D. Rieke, J. Org. Chem., 57 (1992) 2667; (b) R.T. Taylor and L.A. Flood, J. Org. Chem., 48 (1983) 5160; (c) P. Perkins, K. Peter and C. Vollhardt, J. Am. Chem. Soc., 101 (1979) 3985; (d) G. Gubitosa, M. Boldt and H.H. Brintzinger, J. Am. Chem. Soc., 99 (1977) 5174; (e) C.U. Pittman, B.T. Kim and W.M. Douglas, J. Org. Chem., 40 (1975) 590; (f) R.H. Grubbs, C. Gibbons, L.C. Kroll, W.D. Bonds, Jr. and C.H. Brubaker, Jr., J. Am. Chem. Soc., 95 (1973) 2373.
- 6 (a) H.R. Allcock, J.A. Dodge, I. Manners and G.H. Riding, J. Am. Chem. Soc., 113 (1991) 9596; (b) I. Manners, G.H. Riding, J.A. Dodge and H.R. Allcock, J. Am. Chem. Soc., 111 (1989) 3067; (c) S.F. Reed, Jr., J. Polym. Sci: Polym. Chem. Ed., 19 (1981) 1867; (d) D.C. Van Landyt and S.F. Reed, Jr., J. Polym. Sci: Part A-1, 9 (1971) 523.
- 7 (a) J.W. Suggs, J. Am. Chem. Soc., 101 (1979) 489; (b) C,-H. Jun, Bull. Korean Chem. Soc., 11 (1990) 187.
- 8 C.-H. Jun, J.-B. Kang, J.-Y. Kim. Bull. Korean Chem. Soc., 12 (1991) 259. This is the preliminary communication of hydroiminoacylation of 1,5-hexadiene with 2.
- 9 D.E. Bublitz and K.L. Rinehart, Jr., Organic Reactions, 17 (1975) 1.
- 10 The ratios of the vinyl and the internal olefins were calculated by measuring the integration of the vinylic CH₂ peaks at 4.9-5.0 ppm and the internal -CH=CH- and the vinylic -CH= 5.3-5.6 ppm. The vinyl content of the commercial PTPB 7 (labelled as 25% vinyl) was recalculated by ¹H NMR spectra to give 27% of the vinyl group with 73% of the internal olefin.
- 11 J. Haslam, H.A. Willis and D.C.M. Squirrell, in *Identification and* Analysis of Plastics, Heyden, London, 1972, p. 441.
- 12 B.E. Mann, Adv. Organomet. Chem., 12 (1974) 135.
- 13 R.M. Silverstein, G.C. Bassler and T.C. Morrill, in Spectroscopic Identification of Organic Compounds, 4th ed., John Wiley & Sons, New York, 1981, p. 259.
- 14 A.N. Nesmeyanov, E.G. Perevalova and L.S. Shilovtseva, *Izv. Akad. Nauk SSSR, Otd. Khim. Nauk*, (1961) 1982 [C.A., 56, (1962) 10185].